3.295 \(\int \frac{\sqrt{e \csc (c+d x)}}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=105 \[ \frac{4 \sqrt{\sin (c+d x)} \text{EllipticF}\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right ),2\right ) \sqrt{e \csc (c+d x)}}{3 a d}-\frac{2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 a d}+\frac{2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 a d} \]

[Out]

(2*Cot[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*a*d) - (2*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*a*d) + (4*Sqrt[e*Csc[
c + d*x]]*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.203063, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3878, 3872, 2839, 2564, 30, 2567, 2641} \[ -\frac{2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 a d}+\frac{2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 a d}+\frac{4 \sqrt{\sin (c+d x)} F\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{e \csc (c+d x)}}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Csc[c + d*x]]/(a + a*Sec[c + d*x]),x]

[Out]

(2*Cot[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*a*d) - (2*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*a*d) + (4*Sqrt[e*Csc[
c + d*x]]*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*a*d)

Rule 3878

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2567

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a*Cos[e +
 f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1))/(b*f*(n + 1)), x] + Dist[(a^2*(m - 1))/(b^2*(n + 1)), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{e \csc (c+d x)}}{a+a \sec (c+d x)} \, dx &=\left (\sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{1}{(a+a \sec (c+d x)) \sqrt{\sin (c+d x)}} \, dx\\ &=-\left (\left (\sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{\cos (c+d x)}{(-a-a \cos (c+d x)) \sqrt{\sin (c+d x)}} \, dx\right )\\ &=\frac{\left (\sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{\cos (c+d x)}{\sin ^{\frac{5}{2}}(c+d x)} \, dx}{a}-\frac{\left (\sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{\cos ^2(c+d x)}{\sin ^{\frac{5}{2}}(c+d x)} \, dx}{a}\\ &=\frac{2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 a d}+\frac{\left (2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\sin (c+d x)}} \, dx}{3 a}+\frac{\left (\sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{x^{5/2}} \, dx,x,\sin (c+d x)\right )}{a d}\\ &=\frac{2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 a d}-\frac{2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 a d}+\frac{4 \sqrt{e \csc (c+d x)} F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 a d}\\ \end{align*}

Mathematica [A]  time = 0.354748, size = 60, normalized size = 0.57 \[ \frac{2 (e \csc (c+d x))^{3/2} \left (-2 \sin ^{\frac{3}{2}}(c+d x) \text{EllipticF}\left (\frac{1}{4} (-2 c-2 d x+\pi ),2\right )+\cos (c+d x)-1\right )}{3 a d e} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Csc[c + d*x]]/(a + a*Sec[c + d*x]),x]

[Out]

(2*(e*Csc[c + d*x])^(3/2)*(-1 + Cos[c + d*x] - 2*EllipticF[(-2*c + Pi - 2*d*x)/4, 2]*Sin[c + d*x]^(3/2)))/(3*a
*d*e)

________________________________________________________________________________________

Maple [C]  time = 0.215, size = 320, normalized size = 3.1 \begin{align*}{\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1 \right ) ^{2} \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}}{3\,da \left ( \sin \left ( dx+c \right ) \right ) ^{5}}\sqrt{{\frac{e}{\sin \left ( dx+c \right ) }}} \left ( 2\,i\sqrt{{\frac{-i\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) +i}{\sin \left ( dx+c \right ) }}}\sqrt{{\frac{i\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) -i}{\sin \left ( dx+c \right ) }}}\sqrt{{\frac{-i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }}}\sin \left ( dx+c \right ) \cos \left ( dx+c \right ){\it EllipticF} \left ( \sqrt{{\frac{i\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) -i}{\sin \left ( dx+c \right ) }}},{\frac{\sqrt{2}}{2}} \right ) +2\,i{\it EllipticF} \left ( \sqrt{{\frac{i\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) -i}{\sin \left ( dx+c \right ) }}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{{\frac{-i\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) +i}{\sin \left ( dx+c \right ) }}}\sqrt{{\frac{i\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) -i}{\sin \left ( dx+c \right ) }}}\sqrt{{\frac{-i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }}}\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \sqrt{2}-\sqrt{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*csc(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x)

[Out]

1/3/a/d*2^(1/2)*(e/sin(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))^2*(2*I*((-I*cos(d*x+c)+sin(d*x+c)+I)/sin
(d*x+c))^(1/2)*((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)
*cos(d*x+c)*EllipticF(((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2),1/2*2^(1/2))+2*I*EllipticF(((I*cos(d*x+c)
+sin(d*x+c)-I)/sin(d*x+c))^(1/2),1/2*2^(1/2))*((-I*cos(d*x+c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*((I*cos(d*x+c)+s
in(d*x+c)-I)/sin(d*x+c))^(1/2)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)+cos(d*x+c)*2^(1/2)-2^(1/2))/si
n(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \csc \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sqrt(e*csc(d*x + c))/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e \csc \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(e*csc(d*x + c))/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sqrt{e \csc{\left (c + d x \right )}}}{\sec{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))**(1/2)/(a+a*sec(d*x+c)),x)

[Out]

Integral(sqrt(e*csc(c + d*x))/(sec(c + d*x) + 1), x)/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \csc \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(e*csc(d*x + c))/(a*sec(d*x + c) + a), x)